Click here for EDACafe
Search:
IP Search
  Home | EDA Weekly | Companies | Downloads | e-Catalog | IP | Interviews | Forums | News | Resources |  ItZnewz  |
  Free 25MB Email | Submit Material | Universities | Books & Courses | Events | Advertise | PCBCafe | Subscription |
Cadence
http://www.mentor.com/fpga/
http://www.mentor.com/jobs/
 EDACafe 

Intel Researchers Develop Breakthrough Transistor Technologies to Fight Power, Heat Issues in Future Processors

SANTA CLARA, Calif.—(BUSINESS WIRE)—Nov. 5, 2003— Intel Corporation today announced it has identified new materials to replace those that have been used to manufacture chips for more than 30 years. The breakthrough is a significant accomplishment as the industry races to reduce electrical current leakage in transistors -- a growing problem for chip manufacturers as more and more transistors are packed onto tiny pieces of silicon.

Intel researchers have developed record-setting, high-performance transistors using a new material, called high-k, for the "gate dielectric" and new metal materials for the transistor "gate." Transistors are the microscopic, silicon-based switches that process the ones and zeros of the digital world. The gate turns the transistor on and off and the gate dielectric is an insulator underneath it that controls the flow of electric current. Together, the new gate and gate dielectric materials help drastically reduce current leakage that leads to reduced battery power and generates unwanted heat. Intel said the new high-k material reduces leakage by more than 100 times over the silicon dioxide used for the past three decades.

The industry has been searching for new transistor gate materials for many years, but technical difficulties have impeded practical implementation. "This is the first convincing demonstration that new gate materials will enable transistors to perform better, while overcoming the fundamental limits of the silicon dioxide gate dielectric material that has served the industry for more than three decades," said Sunlin Chou, Intel senior vice president and general manager of the Technology and Manufacturing Group. "Intel will use this advancement along with other innovations, such as strained silicon and tri-gate transistors, to extend transistor scaling and Moore's Law."

According to Moore's Law, the number of transistors on a chip roughly doubles every two years, resulting in more features, increased performance and decreased cost per transistor. To maintain this pace of innovation, transistors must continue to shrink to ever-smaller sizes. However, using current materials, the ability to shrink transistors is reaching fundamental limits because of increased power and heat issues that develop as feature sizes reach atomic levels. As a result, implementing new materials and innovative transistor structures is imperative to the future of Moore's Law and the economics of the information age.

The High-K and Metal Gate Solution

All transistors have an insulator material, called a gate-dielectric that is critical to their operation. For the last 30 years, silicon dioxide has served as the material of choice for this key transistor component because of its manufacturability and its ability to deliver continued transistor performance improvements at smaller sizes.

Intel has successfully shrunk the silicon dioxide gate dielectric to sizes as small as 1.2 nanometers (nm) thick, which is equal to only five atomic layers. As the silicon dioxide material gets thinner, electric current leakage through the gate dielectric increases and leads to wasted current and unnecessary heat. To keep electrons flowing in the proper location and solve this critical issue, Intel plans to replace the current material with a thicker high-k material in the gate dielectric, significantly reducing current leakage.

The second part of the solution is the development of a metal gate material, since the high-k gate dielectric is not compatible with today's transistor gate. The combination of the high-k gate dielectric with the metal gate enables a drastic reduction in current leakage while maintaining very high transistor performance, making it possible to drive Moore's Law and technology innovation well into the next decade. Intel believes that these new discoveries can be integrated into an economical, high-volume manufacturing process, and is now moving this transistor research into the development phase.

Transistors with these new materials are an option targeted to be integrated into future Intel processors as early as 2007, as part of the company's 45-nm manufacturing process.

Intel will discuss details of the development of new transistor materials on Nov. 6 at the 2003 International Workshop on Gate Insulator in Tokyo. Intel's invited technical paper will outline the critical and timely challenge of developing and integrating new materials to address current leakage, power consumption and heat issues by focusing on two significant breakthroughs: the identification of the correct high-k gate dielectric material to replace the silicon dioxide used today and the identification of metal materials to replace today's gate material that is compatible with the high-k gate dielectric.

Intel, the world's largest chip maker, is also a leading manufacturer of computer, networking and communications products. Additional information about Intel is available at www.intel.com/pressroom.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.



Contact:
Intel Corporation
Kari Skoog, 503-264-1607
kari.e.skoog@intel.com

http://www.mentor.com/dsm/
http://www.mentor.com/pcb/
http://www.mentor.com/dft/
Subscribe to these free industry magazines!
DeVry Online Degrees!


Click here for Internet Business Systems Copyright 1994 - 2003, Internet Business Systems, Inc.
1-888-44-WEB-44 --- Contact us, or visit our other sites:
AECCafe  DCCCafe  CareersCafe  GISCafe  MCADCafe  PCBCafe